The generator matrix

 1  0  1  1  1  1  1  1  0  1  1 X+3 2X  1  1  1  1  1  1  1  1  1 X+3  1 2X  1  1  1  3  1  1  X  1 2X  1  1  1  1 2X+6  1  3  1  1  1  1 2X+3  1  1  1  1  1  1  1  1  1  6  6  1  1  1  1  1
 0  1  1  8 X+3 X+2 2X+4 2X  1  8 X+4  1  1 2X+4 X+1  3 2X+8 2X+1  1 X+2  X 2X+8  1 2X+3  1  2 X+8  X  1 X+1 X+6  1 2X  1 X+5 X+1 2X+5  3  1 2X  1  8 2X+6  3 2X+4  1  8  2 X+5 X+5 2X+6 2X+3 2X+8  X X+2  1  0 2X  2 2X+8  X X+6
 0  0 2X  0  3  3  6  0 2X+3 2X+6  X 2X+3 2X+6 2X+3 2X+3 X+6 2X+6  X X+3 2X  X  3  3  X  3 X+6 X+6 X+3  X 2X  6  X 2X+6  0 2X+6  6 X+3 2X+3 2X+3  3 2X 2X+3  0  X X+3 2X  3  6 X+6  0 X+6 X+6  X 2X+6  3 X+3  X  6 2X  X  X X+3
 0  0  0  6  6  0  3  3  6  0  6  3  0  3  6  0  3  0  3  6  3  3  3  6  6  6  6  0  3  0  0  6  6  0  0  6  6  3  6  6  3  6  0  3  6  0  0  0  3  3  3  0  0  3  3  3  6  6  0  3  6  3

generates a code of length 62 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 117.

Homogenous weight enumerator: w(x)=1x^0+700x^117+774x^118+414x^119+1908x^120+1620x^121+792x^122+2628x^123+2394x^124+1080x^125+2686x^126+1926x^127+612x^128+1152x^129+486x^130+18x^131+210x^132+90x^133+136x^135+18x^138+24x^141+10x^144+4x^153

The gray image is a code over GF(3) with n=558, k=9 and d=351.
This code was found by Heurico 1.16 in 4.01 seconds.